B. Circulation

1. Goals and Opportunities

The Circulation Element is one of seven State mandated elements of the General Plan and is intended to guide the development of the City's circulation system in a manner that is compatible with the Land Use Element. A well-planned circulation system is important and the State of California has mandated the adoption of a citywide Circulation Element since 1955. The anticipated level and pattern of development by the year 2010, as identified in the Land Use Element, and increased development in the surrounding areas will increase capacity demands on the City's roadways. To help meet these demands and achieve balanced growth, the City has adopted specific goals and policies which serve as the basis for the Circulation Element.
The purpose of the Circulation Element is to provide a safe, sensible and efficient circulation system for the City. The current State mandate for a Circulation Element states that the General Plan shall include:

"... a circulation element consisting of the general location for proposed major thoroughfares, transportation routes, terminals, and other local public utilities and facilities, all correlated with the land use element of the plan."

To meet these objectives, the Circulation Element addresses the circulation improvements needed to relieve traffic congestion due to future land uses. It also addresses potential demand management strategies and mass transit services. Corresponding goals and policies have been adopted to ensure that all components of the circulation system will meet the goals of the City. The following circulation goals are established:

- An adequate transportation/circulation system that supports regional and local land uses at adopted level of service (LOS) standards and complies with requirements of the County Transportation Management Program (CMP).

- A network of regional transportation facilities which ensures the safe and efficient movement of people and goods from within the City to areas outside its boundaries and which accommodates the regional travel demands of developing areas outside the city.

- A circulation system that maximizes efficiency
through the use of transportation system management and demand management strategies.

- An efficient public transportation system that provides mobility to all City residents, employees and visitors.

- An efficient bicycle and pedestrian circulation system that encourages these alternative forms of transportation.

- Ensure that development of Class II bikelanes provides for the safe and efficient travel of both bicycles and vehicular traffic.

- Well-designed and convenient parking facilities.

- A truck circulation system that provides effective transport of commodities while minimizing the negative impacts throughout the City.

2. Related Plans and Programs

Several transportation plans have been prepared focusing on the development of a regional transportation system to handle the anticipated traffic loads expected from future development. Plans and programs related to the Circulation Element include the following:

- County of Los Angeles Master Plan of Arterial Highways
- County of Los Angeles, Congestion Management Plan
3. State Law and General Plan Guidelines

This section summarizes the State Law and guidelines established to aid in the preparation of a city's General Plan. It also discusses the Circulation Elements relationship to other elements in the General Plan.

California State Law requires that each city and county adopt a comprehensive, long-term General Plan for its own physical development. In essence, a General Plan serves as the blueprint for future growth and development. As such, the plan must contain policies and programs designed to provide decision makers with a solid basis for land use related decisions.

The General Plan must address many issues which are directly related to and influence land use decisions. In addition to land use and other topics, the plan is required to address the circulation impacts of land use decisions to the extent that they apply to a particular jurisdiction.

The "General Plan Guidelines" (Section 65302 of the Government Code), published by the State of California, Office of Planning and Research, suggests that the policies and plan proposals of the Circulation Element should:

- Coordinate the transportation and circulation system with planned land uses;
- Promote the efficient transport of goods and the safe and effective movement of all segments of the population;
The City of Norwalk General Plan
CITYWIDE ELEMENTS - CIRCULATION

- Make efficient use of existing transportation facilities; and
- Protect environmental quality and promote the wise and equitable use of economic and natural resources.

The purpose of the Circulation Element is to comply with the directive of the State Law and guidelines in order to achieve the objectives of promoting the efficient transport of goods and the safe, efficient movement of traffic within the city.

4. Relationship to Other General Plan Elements

A major goal in the preparation of the General Plan for Norwalk is to achieve internal consistency throughout the various General Plan elements. For instance, the Circulation Element portrays the roadway system needed to serve traffic generated by uses permitted in the Land Use Element, as well as increased development in the surrounding areas. The Circulation Element is associated with the Noise Element since traffic forecasts are used in conjunction with other data to determine noise contours for the General Plan uses.

5. Scope and Content of the Element

This Element is comprised of several sections which address the major components of the circulation system. Each section contains summary information on the existing and future conditions of the system, relevant plans and programs which influence circulation in Norwalk and the goal and policy statements corresponding to each component.
6. The Circulation Plan

This section of the Circulation Element describes the location and extent of circulation facilities and services, and identifies standards that apply to each.

a. Components of the Circulation System

Several components comprise the circulation system serving the City of Norwalk. A regional network provides for travel demand through the City, to and from destinations outside the City, and the local network provides for travel demand within the City, for residents, employees and visitors. Both are described in the following sections.

1. Regional Network

Major Generators - The City of Norwalk is located in southeast Los Angeles County and is primarily surrounded by residential/industrial communities. Regional circulation is a major issue as commuter traffic between these communities and major employment centers to the north, west and south contribute to the regional travel demand in Norwalk.

Freeways - The Santa Ana Freeway (I-5) is the major north-south route for regional interstate travel between San Diego and Los Angeles, and is located in the central portion of the City. Interchange facilities are provided at
Imperial Highway, Pioneer Boulevard, San Antonio Drive/Norwalk Boulevard, and Firestone Boulevard.

The cities of Norwalk, Buena Park, Commerce, Downey, La Mirada and Santa Fe Springs established the Interstate-5 Consortium Cities, a Joint Powers Authority (JPA) with the goal of collectively acting to increase the safety and efficiency of the Federal Interstate Route 5 Freeway while protecting the best interests of the member communities. Proposed freeway widening from 6 lanes to 8-10 lanes will improve freeway capacity and safety but could also result in significant hardships to residents and displacement of commercial and industrial districts.

The San Gabriel Freeway (I-605) traverses the city in a north-south direction in the western area of the city. Interchange facilities are provided at Firestone Boulevard, Imperial Highway, Rosecrans Avenue, and Alondra Boulevard. The I-105 Freeway intersects the I-605 Freeway from the west and provides for interchange facilities between the two freeways along with the Metro Green line and a Transportation Center with a Park-and-Ride lot within the freeway complex.

2. Local Network
The City of Norwalk General Plan
CITYWIDE ELEMENTS - CIRCULATION

The local network, which is comprised of arterial roads, and local and collector streets, is described in the following section.

b. Roadway Facility Designations

The future roadway system in Norwalk has been defined using a classification system which describes a hierarchy of facility types. The categories of roadways included in this classification system differentiate the size, function and capacity of the roadway links for each type of roadway.

There are several basic categories in the hierarchy, ranging from "Freeway," with the highest capacity, through "Major" and "secondary" arterials, to "Collector" streets, with the lowest capacity. Major, primary and secondary arterials are expected to include bike lanes which conform to City standards. Different optional facilities are also expected (on-street parking, sidewalks, extra parkway or median landscape treatment, etc.)

The four categories of roadways, including the "Freeway" category, and their typical cross section widths, are described in greater detail in the following paragraphs:

Freeway - A six to ten lane divided roadway with full access control and a typical right-of-way in excess of 150 feet, designed and maintained by the State Department of Transportation (Caltrans).
Major - A five or six lane divided roadway, with a typical right-of-way width of 100 feet and a curb-to-curb width of approximately 80 feet.

Secondary - A four lane divided or undivided roadway, with a typical right-of-way width of 80 feet and a curb-to-curb width of 64 feet.

Collector - A two-lane undivided roadway, with a typical right-of-way width of 54 - 60 feet and a curb-to-curb pavement width of approximately 40 feet. Its function is to distribute traffic between local streets, major and secondary arterials. Although some collectors serve as through routes, their primary function is to provide access to surrounding land uses.

As a roadway facility is downgraded, the non curb-to-curb width increases to allow for landscaping and other amenities.

c. Performance Criteria

Evaluating the ability of the circulation system to serve the desired future land uses requires the establishment of suitable "performance criteria". These are the means by which future traffic volumes are compared to future circulation system capacity and the adequacy of that circulation system assessed.

Performance criteria have a policy component which establishes a desired level of service (LOS) and a technical component which
specifies how traffic forecast data can be used to measure the achievement of the criteria. The following table establishes the maximum average daily trips for various types of roadway facilities, at certain levels of service:

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Maximum Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS D</td>
<td>LOS E</td>
</tr>
<tr>
<td>Major (6 lanes divided)</td>
<td>50,600</td>
</tr>
<tr>
<td>Major (5 lanes divided)</td>
<td>37,520</td>
</tr>
<tr>
<td>Secondary (4 lanes divided)</td>
<td>30,000</td>
</tr>
<tr>
<td>Secondary (4 lanes undivided)</td>
<td>20,000</td>
</tr>
<tr>
<td>Collector (2 lanes undivided)</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Average daily traffic (ADT) capacities represent the general level of daily traffic that each roadway type can carry and should be used as a general design guideline only. Level of Service for the circulation system is more precisely determined by examining peak hour intersection volumes and, therefore, the Circulation Element uses peak hour volumes as a basis for determining appropriate capacity needs. The following table interprets traffic volume into levels of service.
PEAK HOUR LEVEL OF SERVICE

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Traffic Flow Quality</th>
<th>Maximum ICU Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS A</td>
<td>Low volume; high speeds; speed not restricted by other vehicles; all signal cycles clear with no vehicles waiting through more than one signal cycle.</td>
<td>0.00-0.60</td>
</tr>
<tr>
<td>LOS B</td>
<td>Operating speeds beginning to be affected by other traffic; between one and ten percent of the waiting vehicles have more than one signal cycle during peak traffic periods.</td>
<td>0.61-0.70</td>
</tr>
<tr>
<td>LOS C</td>
<td>Operating speeds and maneuverability closely controlled by other traffic; between 11 and 30 percent of the waiting vehicles have more than one signal cycle during peak traffic periods; recommended ideal design standard.</td>
<td>0.71-0.80</td>
</tr>
<tr>
<td>LOS D</td>
<td>Tolerable operating speeds; 31-70 percent of the waiting vehicles have more than one signal cycle during peak traffic periods; often used as design standard in urban areas.</td>
<td>0.81-0.90</td>
</tr>
<tr>
<td>LOS E</td>
<td>Capacity; the maximum traffic volume an intersection can operate with; restricted speeds; 71 to 80 percent of the waiting vehicles have one or more than one signal cycle during peak traffic periods.</td>
<td>0.91-1.00</td>
</tr>
<tr>
<td>LOS F</td>
<td>Long queues of traffic; unstable flow; stoppages of long duration; high traffic volume and speed can drop to zero.</td>
<td>Above 1.00</td>
</tr>
</tbody>
</table>

Source: "Highway Capacity Manual," Highway Research Board Special Report 87, National Academy of Sciences, Washington D.C., 1965. Page 320. Peak hour intersection level of service (LOS) to be based on ICU values calculated as follows: Saturation flow rate - 1,700 vehicles per hour (VPH); Clearance Interval 0.05 ICU

The City of Norwalk has established level of service (LOS) "C" as a target LOS standard and
The City of Norwalk General Plan
CITYWIDE ELEMENTS - CIRCULATION

LOS "D" as a threshold standard for ADT link volumes and peak hour intersection volumes. The City recognizes that not all intersections within the City can meet the target LOS "C". Therefore, the City should establish a critical intersection list which consists of intersections which do not meet the target of LOS "C" at peak periods only, but do not exceed the City's threshold LOS standard of "D." For an intersection to be placed on the City's critical intersection list, the City must find that the improvements necessary to meet the target LOS "C" are not feasible because of one or more of the following reasons: (1) the cost of the necessary improvements exceeds available funding sources; (2) the design of the necessary improvements is not compatible with the surrounding land uses; or, (3) the design of the necessary improvements is contrary to other established City policies.

The level of service descriptions are based on the Intersection Capacity Utilization (ICU) method. The ICU method measures the ratio of intersection demand to capacity. The ICU is calculated by adding the ratios of demand to capacity for the critical movements at an intersection.

The City of Norwalk is also a part of the Los Angeles County Congestion Management Plan (CMP) which is a state mandated program with the passage of Assembly Bill 471. The requirements of the CMP became effective with the voter approval of Proposition 111 in June, 1990. The CMP was created for the following
purposes:

- To link land use, transportation and air quality decisions;
- To develop a partnership among transportation decision makers on devising appropriate transportation solutions that include all modes of travel; and
- To propose transportation projects which are eligible to compete for state gas tax funds.

Two City of Norwalk intersections are included in the CMP system for annual monitoring, they are:

Station 110 - Firestone Boulevard/Imperial Highway
Station 111 - Imperial Highway/Norwalk Boulevard

In addition to monitoring the two CMP intersections, the document sets forth a series of requirements including, local input to the CMP, transit monitoring, implementation of a Transportation Demand Management (TDM) Ordinance, land use analysis program, participation in the County deficiency plan and adopting an annual self-certification resolution and local implementation report. Appendix D of the CMP sets forth guidelines for CMP Transportation Impact Analysis (TIA). In general, a CMP TIA is required for projects required to prepare an Environmental Impact Report based on local requirements.
The goals and policies included in this Element emphasize the importance of developing a circulation system that is capable of serving both existing and future residents while preserving community values and character. The Circulation Plan that is required to support the Land Use Element is discussed in the following sections.

1. Existing Circulation Plan

Illustrated in the following figure, “The Circulation Plan: Street Designations,” are the existing street designations for roadways in the City of Norwalk, which will remain as the future street designations.
The following figure, titled "Existing Number of Travel Lanes/Intersection Control Devices," presents the existing number of travel lanes and major intersection controls within the city boundaries. The figure indicates whether the roadways are divided, with median islands or grade separation.

This figure is followed by another graphic which displays existing average daily traffic volumes (ADT), titled "Existing Average Daily Traffic." The traffic volumes represent the latest two-way traffic counts conducted on the major City of Norwalk street and highway system and serve as one of the determinants for the level of service (LOS) factors presented in the third figure, titled "Existing Roadway Levels of Service", as existing street and highway levels of service (LOS).
The City of Norwalk General Plan
CITYWIDE ELEMENTS - CIRCULATION

EXISTING ROADWAY LEVELS OF SERVICE

February 29, 1996

Page 5B.19
2. Future Circulation Plan

The desirable goal for every classified street is that it carries the designated volume of traffic at the desired level of service.

The arterial roadways in the planned circulation system were illustrated at the beginning of this section and are classified according to their facility-type designation and sized to provide sufficient capacity for previously projected volumes. The daily, two-way street and highway traffic volumes have been revised to reflect the General Plan Land Use Map. The traffic volumes reflected in the figure titled “General Plan Average Daily Traffic” present the daily, two-way traffic volumes calculated from the changes between existing land use trip generation figures to the new General Plan land designated land uses. The resultant traffic daily volumes have been converted to street and highway Levels of service and are presented in the figure titled “General Plan Roadway Levels of Service.” Levels of service (LOS) increases are forecast, particularly in the area of Firestone Boulevard and Imperial Highway. As shown, the street and highway LOS remains within acceptable levels.
The City of Norwalk General Plan
CITYWIDE ELEMENTS - CIRCULATION

Not to scale

Legend:
- Study Area Boundary
- Freeway
- Major Highway
- Secondary Highway
- Collector Road
- Railroad
- Average Daily Trips in 1,000's

General Plan Average Daily Traffic (ADT)

February 29, 1996
e. Public Transportation Plan

The City of Norwalk has a network of public transit routes providing access to employment centers, shopping and recreational areas. The network is illustrated in the following figure, titled “Public Transportation Network,” and service is provided by the Metropolitan Transit Authority. The network includes routes operated by the Norwalk Transit System (Hustle Bus), as well as, the Green Line and High Occupancy Vehicle lanes in the I-105 Freeway right-of-way.
f. **Bikeway Plan and Pedestrian Circulation**

The City of Norwalk recognizes that bicycle and pedestrian travel are an important component of the City's circulation system. Given the fact that Southern California has a serious air quality problem and an increasing congestion problem, the City of Norwalk encourages bicycle and pedestrian travel as alternative forms of transportation.

When analyzing and developing the City's Bikeway Plan, it is helpful to categorize different types of cyclists by their riding habits. One category of cyclists includes families, children and other recreational riders who ride at a slow pace. These riders generally prefer to ride on off-street trails and sidewalks. Another category of riders is the fitness and recreational rider. These cyclists generally travel at high speeds for long distances. Primarily, these riders ride on the major arterial roadways and off-street trails if the trails are large regional trails. These cyclists do not ride on sidewalks. The last category of cyclists includes the commuter cyclist. These riders also travel at high speeds and prefer to take the most direct route to their destination. Generally, these riders prefer to ride on major arterial roadways. However, commuter cyclists will also ride on off-street trails if the trails provide a more direct route to their destination. Similar to the fitness rider, commuter cyclists do not ride on the sidewalk. In order to accommodate all of the City's cyclists, the City's goal is to provide a
network of both on-street and off-street bikeways.

Sidewalks designed to accommodate both pedestrian and bicycles serve a very limited function, and will be used only by children and very slow recreational riders. Encouraging other fast riding cyclists to use sidewalks creates a dangerous situation for both cyclists and pedestrians. Pedestrian trails connect various points in the community with nearby residential, commercial, and recreational uses. These trials not only provide efficient circulation, but ensure safe access to desired destinations.

1. Bikeway Plan

The goal is to develop a network of on-street and off-street bikeways to accommodate the different types of cyclists in Norwalk. Currently, the network of bicycle routes is only partially established. Following completion of the improvements identified in the Bikeway Plan, bike lanes will be included on most of the City's primary and major arterial roadways. The following outlines the categories of bikeways:

- Class I: A paved path that is separate from any motor vehicle travel lane;
- Class II: A restricted lane within the right-of-way of a paved roadway for the exclusive use of
bicycles.

2. Design Criteria

In order to promote bicycle travel in Norwalk, adequately designed facilities which promote safe bicycle travel are essential. There are two basic hazards when riding bicycles on the street: motorized vehicles and road hazards.

Appropriately designed roadways and good roadway maintenance can help minimize these hazards. The following are four types of facilities and programs which will help reduce the hazards of cycling.

Bikelanes - An effective and efficient bicycle system provides for the unrestricted movement of both motorized vehicles and bicycles. Therefore, it is essential to maintain a separation of motor vehicles and bicycles. The best method for providing this on-road separation is bicycle lanes. Bicycle lanes are an area between the curb and the travel lane for exclusive or semi-exclusive use of bicycles. The minimum width of a bikelane should be five feet from the longitudinal line which separates the concrete gutter from the road surface for roadways without on-street parking. If parking is permitted, a minimum of fifteen feet from the curb should be provided to accommodate
both parked vehicles and bicycles. If the road is designed without a separation between the gutter and road surface, the bikelane should be five feet from the face of the curb.

Turning movements are the most likely time for bicycles and vehicles to conflict with one another. Vehicles which desire to make a right turn must cross the path of the cyclist and bicyclists which desire to make a left turn must cross the travel lanes. Therefore, to ensure safety and roadway efficiency, two design features should be included in roadway design, when feasible:

1. When there is a free right turn lane or a right turn only lane, the bicycle lane should be moved from being next to the curb to being located between the designated right turn lane and the first thorough travel lane, well before the intersection begins. Additionally, sufficient width, minimum of 14 feet, should be maintained for the right turn lane to accommodate those bicycles making a right turn.

2. When there are either one or multiple designated left turn lanes, an area to accommodate bicycle travel, with a minimum of four feet, should be provided.
between the last through travel lane and the first designated left turn lane.

Minimum Curb Lane Width - In areas where bike lanes are not feasible, it is essential to maintain a curb lane width wide enough to accommodate bicycles. If the curb lane width is too narrow, it creates a situation where bicycle travel becomes dangerous and motor vehicle travel is impeded by the presence of bicycles. Therefore, it is essential to maintain a minimum curb width of 17 feet in areas where Class II bikelanes are not feasible.

Road Hazards - One reason bicyclists tend to ride in the outside (closest to the travel lane) portion of the bikelane is to avoid road hazards. There are many road hazards which occur near the curb. One of the major hazards is the longitudinal separation line which occurs between the concrete gutter and the road surface. Because this change in surface elevation is so dangerous for cyclists, the area between the longitudinal line and the curb should not be considered as part of the bike lane. Another road hazard near the curb is drainage grates. The parallel-bar grates can trap a bicyclist's wheel, causing a serious crash to occur. The best design for drainage facilities is the curb-face inlet. If this design is not feasible, then the next best
The City of Norwalk General Plan
CITYWIDE ELEMENTS - CIRCULATION

approach is a bicycle safe grate, such as a honeycomb or short angled slot design. Another road hazard occurring near the curb is road debris. Vehicle travel tends to push debris toward the curbs. Regular street sweeping can solve this problem.

Bicycle Sensitive Traffic Signals - Demand activated signals are known for being unresponsive to bicycles. Bicycles generally do not have either enough metal to activate detectors. However, modern detection systems have been developed which do detect bicycles. One design available is a modified quadruple loop (Caltrans Type D). In addition to bicycle loop detection, traffic signals should be modified or constructed to include signal push buttons for use by bicyclists.

Pedestrian sidewalks connect various points in the community with nearby residential, commercial and recreational uses. These sidewalks not only provide efficient circulation but ensure safe access to desired destinations.

g. Truck Routes

The City of Norwalk has an existing truck route system in order to accommodate truck traffic and encourage trucks to use roadways where their impacts on residential and congested areas will be minimal. The existing truck route system is presented in the figure titled "Existing
Truck Route."

Because of the congestion on San Antonio Drive, particularly near the Civic Center, City Hall, library and other related uses, San Antonio Drive and Foster Drive are recommended to be removed from the truck route system. Other roadways are equally convenient to freeway interchanges. The City of Norwalk should request Caltrans cooperation for signing the San Antonio Drive/Norwalk Boulevard freeway off-ramp signing with "No Trucks" signing. The figure titled "Proposed Truck Routes" presents the recommended Truck Route system.
h. Rail

Passenger rail service is provided from an Amtrack Depot in Norwalk at 12700 Imperial Highway near Bloomfield Avenue. The rail depot is currently served by Amtrack and the MetroLink train services. Amtrack serves the depot with nine trains daily in each direction with service between San Diego and Santa Barbara. MetroLink serves the depot with four trains (northbound) and four trains (southbound) in the AM and PM peak periods, respectively.

The Metropolitan Transportation Authority (MTA) operates the "Green Line" Light Rail Vehicles Between the I-605/I-105 Freeway Station and El Segundo. A 521 space park-and-ride facility is provided at the freeway confluence and service is provided between the hours of 5:00 AM and 11:00 PM.

i. Air

Air travel is available from the Los Angeles International Airport (LAX) located approximately 25 miles west of Norwalk. LAX is the closest regional airport that Norwalk residents could use. Other regional airports are located within approximately 25 to 45 miles distant in Long Beach, John Wayne Airport (Orange County), Ontario and Long Beach Airport.

j. Harbor-Port
The closest harbor facilities are located in Los Angeles-Long Beach. Commercial and recreational facilities are available at these locations. Regular passenger service to other destinations such as Catalina Island and cruise ship services can be obtained at these locations.

7. Policies and Implementation Measures

The Circulation Element is based on a set of circulation-related goals which reflect and are designed to support the citywide objectives of the General Plan. The goals acknowledge the changing economic and environmental conditions in the City of Norwalk and surrounding regions and the anticipated needs of the community.

LOCAL THOROUGHFARES AND TRANSPORTATION ROUTES

Goal 1 An adequate transportation/circulation system that supports regional and local land uses at adopted level of service (LOS) standards and complies with requirements of the County Transportation Management Program (CMP).

Policy 1.1 - Develop and maintain a road system that is based upon and is in balance with the Land Use Element of the General Plan.

Policy 1.2 - Make all feasible transportation improvements in order to meet a target level of service (LOS) standard of "C" and a threshold standard of LOS "D." The City recognizes that not all intersections within the City can meet this target LOS. Therefore, the City will
establish a critical intersection list which consists of intersections which do not meet the target LOS of "C," at peak periods only, but do not exceed the City's threshold standard of "D." In order for an intersection to be placed on the City's critical list, the City Council must find that the improvements necessary to meet the target LOS "C" are not feasible because of one or more of the following reasons: 1) the cost of the necessary improvements exceeds available funding sources; 2) the design of the necessary improvements is not compatible with the surrounding land uses; or 3) the design of the necessary improvements is contrary to other established City policies.

Policy 1.3 - Make all feasible transportation improvements in order to meet the threshold level of service unless the City determines that the unacceptable level of service is a direct result of regional traffic and that the improvements necessary to achieve the threshold level of service: 1) exceed the available funding sources; 2) are not compatible with the surrounding land uses; or 3) the design of the improvements is contrary to other established City policies.

Policy 1.4 - Each signalized intersection that has been improved to its maximum feasible configuration and still does not meet the threshold level of service shall be placed on the deficient intersection list.

Policy 1.5 - Allow adjustment of stated requirements if necessitated by unusual or
extraordinary circumstances including, but not limited to, such conditions as an arterial highway temporarily accommodating traffic usually carried by a freeway while freeway improvements are being constructed.

Policy 1.6 - Measure traffic LOS using the current guidance regarding traffic level of service policy implementation established by the Local Transportation Authority.

Policy 1.7 - Require necessary conditions of approval on development projects to achieve traffic LOS standards prescribed in this Element.

Action 1.7.1 - Require that proposals for major new developments include a traffic impact analysis which identifies measures to mitigate and identified project impacts according to the traffic LOS standards prescribed in this Element.

Policy 1.8 - All development projects contributing one percent or more to the critical movement of an intersection that is either projected to operate or currently operates below the target level of service as a result of project implementation, may be required to fund all required feasible transportation improvements necessary to achieve the target LOS or, if the intersection exceeds the target LOS prior to project approval, mitigate the impacts of the project so that the intersection ICU is returned to its level of operation prior to project
approval. Even for intersections where the target LOS is "C," in the interim, prior to buildout, the City may require mitigation to maintain a LOS of "C."

Necessary feasible improvements to mitigate an intersection to its level of operation prior to project approval shall be targeted for completion prior to issuance of Certificates of Use and Occupancy for the approved project.

If the City determines that the cost of the improvement(s) is not feasible, the City may require that any feasible short-term improvements be made in a timely manner.

Policy 1.9 - Those intersections on the deficient intersection list may be exempted from the requirements of Policy 1.8.

Policy 1.10 - cooperate with nearby cities and the County of Los Angeles in making transportation improvements of mutual interest and priority.

Policy 1.11 - Coordinate roadway improvements with applicable county, state and federal transportation plans and proposals.

Policy 1.12 - Require the construction of dual left-turn lanes where the traffic volumes are in excess of 300/hour for a left turn movement, where reasonable.

Policy 1.13 - Provide for the safe and expeditious transport of hazardous materials.
The City of Norwalk General Plan

CITYWIDE ELEMENTS - CIRCULATION

Policy 1.14 - Limit driveway access to arterials streets to maintain a desired quality of arterial traffic flow.

Policy 1.15 - Design local and collector streets to discourage their use as through traffic routes.

INTERCITY AND REGIONAL TRANSPORTATION

Goal 2 A network of regional transportation facilities which ensures the safe and efficient movement of people and goods from within the City to areas outside its boundaries and which accommodates the regional travel demands of developing areas outside the city.

Policy 2.1 - Maintain a proactive and assertive role with the appropriate agencies dealing with regional transportation issues affecting the City.

Policy 2.2 - Work with adjacent cities to ensure that the traffic impacts of development projects in these cities do not adversely impact the City of Norwalk and that traffic impacts of Norwalk projects do not adversely impact neighboring cities.

TRANSPORTATION SYSTEM/DEMAND MANAGEMENT

Goal 3 A circulation system that maximizes efficiency through the use of transportation system management and demand management strategies.

Policy 3.1 - Encourage new development which
facilitates transit services, provides for non-automotive
circulation and minimizes vehicle miles traveled.

Policy 3.2 - Implement traffic signal coordination on
arterial streets, where practical, and integrate signal
coordination efforts with those of adjacent
jurisdictions.

Policy 3.3 - Implement intersection capacity
improvements where feasible and justified by traffic
demand.

Policy 3.4 - Encourage the implementation of
employer Transportation Demand Management
(TDM) requirements included in the City's adopted
TDM ordinance and in the Southern California Air
Quality Management District's Regulation 15
Program.

Policy 3.5 - Support the development of additional
regional public transportation facilities and services.

Policy 3.6 - Promote ridesharing through publicity
and distribution of information to the public.

PUBLIC TRANSPORTATION

Goal 4 An efficient public transportation system that
provides mobility to all City residents, employees
and visitors.

Policy 4.1 - Support the efforts of the Metropolitan
Transportation Authority and City of Norwalk Transit
System to provide additional local and express bus
service to Norwalk.
Policy 4.2 - Encourage employers to reduce vehicular trips by offering employee incentives.

Policy 4.3 - Promote new development that is designed in a manner which (1) facilitates provision or expansion of transit service, (2) provides on-site commercial and recreational facilities to discourage mid-day travel and (3) provides non-automobile circulation within the development.

Action 4.3.1 - Require new development to fund transit facilities, such as bus shelters and turn-outs, where appropriate.

Policy 4.4 - Encourage developers to work with agencies providing transit service with the objective of maximizing the potential for transit use by residents and/or visitors.

Policy 4.5 - Encourage the provision of safe, attractive and clearly identifiable transit stops and related high quality pedestrian facilities throughout the community.

Bicycle and Pedestrian Facilities

Goal 5 An efficient bicycle and pedestrian circulation system that encourages these alternative forms of transportation.

Policy 5.1 - Require proposed developments, whenever feasible, to dedicate easements for Class I bikeways and to provide additional right-of-way for Class II bikelanes in the project vicinity on all major roadways or other roadways where deemed appropriate.
Policy 5.2 - Support and coordinate the development and maintenance of City bikeways in conjunction with the City's Bikeway Plan, the County of Los Angeles Master Plan of Bikeways and the bikeway plans of neighboring jurisdictions.

Policy 5.3 - Consider retrofitting traffic signal installations to include bicycle push buttons and where feasible use of a modified quadruple loop (Caltrans Type D) signal detection design to allow for bicycle activation of the signal.

Policy 5.4 - Preserve existing pedestrian walkways, Class II bicycle lanes and wide curb lanes by not modifying, altering or restriping any roadway, which currently has either a pedestrian walkway, Class II bicycle lane or enough right-of-way to accommodate a pedestrian walkway or Class II bicycle lane, in a manner which would not provide for pedestrian walkways, Class II bicycle lanes, or a minimum curb-lane width of 17 feet, except in cases of emergency or an extraordinary case. Any such extraordinary case will be reviewed by the City on a case by case basis and approved only if there are no feasible alternatives and the extraordinary circumstances outweigh the concerns relative to pedestrian and bicyclist safety and the need to provide adequate transportation alternatives.

Policy 5.5 - Encourage the provision of showers, changing rooms and an accessible and secure area for bicycle storage at all new and existing developments and public places.

Policy 5.6 - Require developers, whenever feasible, to provide facilities for pedestrian travel such as sidewalks.
and to design developments to provide pedestrian access to the development on sidewalks and not require that pedestrians use driveways to access the development.

Policy 5.7 - Construct sidewalks and retrofit traffic signal installations to include pedestrian crossing buttons when feasible, on all major arterials, secondary, or collector streets which are either proposed or currently under construction, or substantial modification.

Goal 6 Ensure that development of Class II bikelanes provides for the safe and efficient travel of both bicycles and vehicular traffic.

Policy 6.1 - Develop bicycle lanes to a minimum width of five feet from the longitudinal separation line which occurs between the gutter and roadway for areas which prohibit on-street parking, where possible.

Policy 6.2 - At intersections with designated right-turn lanes, the bicycle lane should be moved from being next to the curb to being located between the designated right-turn lane and the first through travel lane well before the intersection begins. Additionally, sufficient width, minimum of 14 feet, should be maintained for the right turn lane to accommodate those bicycles making a right turn.

Policy 6.3 - At intersections with designated left turn lanes, an area with the minimum of four feet should be provided for bicycle travel between the last through travel lane and the first designated left turn lane, when feasible.
Policy 6.4 - For all future construction or modifications, drainage grates should be designated for a curb-face inlet. If this design is not feasible, then the drainage grates should be designated with a honeycomb or short angled slot pattern.

Policy 6.5 - Monitor road repairs to ensure that road repairs are made to the highest standard feasible, to provide a smooth finish with no big gaps or ridges.

Policy 6.6 - Continue to operate a street sweeping program for all streets within the City, paying special attention to sweeping the right curb edge and places in intersections where debris collects.

Policy 6.7 - Maintain adequate roadway width to safely accommodate bicycle traffic during roadway construction activities.

PARKING

Goal 7 Well-designed and convenient parking facilities.

Policy 7.1 - Provide sufficient on- and off-street parking.

Action 7.1.1 - Prepare and adopt parking management guidelines that identify parking requirements.

Policy 7.2 - Consider the prohibition of on-street parking on major arterials to reduce side friction and maintain a desired quality of flow.

Policy 7.3 - Consolidate parking, where appropriate, to eliminate the number of ingress and egress points.
onto arterials. Encourage the use of right-turn-in, right-turn-out type of driveways to reduce crossing conflicts on the arterials.

Policy 7.4 - Encourage the use of shared parking facilities among different land uses, by means of parking districts or other mechanisms. Shared parking is defined as parking spaces that can be used to serve two or more individual developments without conflict or encroachment (based on the time-differing nature of individual peaks). Experience indicates that the prudent and careful combining of uses results in a parking demand that is less than the demand generated by separate freestanding developments of similar size and character.

TRUCK CIRCULATION

Goal 8 A truck circulation system that provides effective transport of commodities while minimizing the negative impacts throughout the City.

Policy 8.1 Provide primary truck routes on selected arterial streets to minimize the impacts of truck traffic on residential areas.

Policy 8.2 - Provide appropriately designed and maintained roadways for the primary truck routes.

Action 8.2.1 - Prepare a program to undertake the placement of signs for designated truck routes.

Action 8.2.2 - San Antonio Drive and Foster Road are recommended to be removed from the Truck Route roadway system. The reason is the
fact that other roadways are equally convenient to freeway interchanges. The level of congestion on all of San Antonio Drive, particularly near its interchange with the I-5 Freeway, as well as City Hall, the Civic Center, library and other related uses makes the roadway unsafe for truck traffic.

Policy 8.3 - Provide loading areas and access ways that are located to avoid conflicts with non-truck traffic.

Action 8.3.1 - Adopt standards which identify appropriate access to loading areas.

RAIL

Goal 9 Support the commuter rail system that meets the needs of current and future residents.

Policy 9.1 - Coordinate with Metro Link, Amtrack and the Metropolitan Transportation Authority to continue and improve commuter rail service to and from the City.